

Effect of off-axis ply orientation on UD fibre microbuckling

Costas Soutis PhD(Cantab), FREng, Department of Materials constantinos.soutis@manchester.ac.uk

Damage Mechanisms under Compression: Fibre microbuckling

Compression failure of laminates occurs by fibre kinking of 0° -plies, immediately followed by delamination (catastrophic failure).

Kink band in multidirectional T800/924C laminate

0° fibre microbuckling initiation model

Berbinau, Soutis (1999)

Equilibrium equation (fibre is modelled as a beam on a non-linear foundation)

$$E_{f}I\frac{d^{4}(v-v_{0})}{dx^{4}} + \frac{A_{f}\sigma_{0^{0}-ply}}{V_{f}}\cdot\frac{d^{2}v}{dx^{2}} - 2d_{f}\left\{\left[\frac{d\tau_{zy}}{dy}\right]_{\frac{W}{2}}\right\}\cdot v - A_{f}G\left(\frac{d(v-v_{0})}{dx}\right)\cdot\frac{d^{2}(v-v_{0})}{dx^{2}} = 0$$

Non-linear differential equation that gives the compressive stress σ_0 of a 0° -ply in terms of the fibre maximum buckling amplitude V

Composites: Part A 30 (1999) 1197-1207

Free edge effect on fibre microbuckling

Berbinau, Soutis (1999)

The microbuckling model of Berbinau, Soutis accounts for fibre properties, initial fibre waviness, ply interactions (interlaminar stresses), matrix nonlinearity.

- Shear stress components are almost zero around 60°
- Normal component σz is compressive

Maximum interlaminar edge stresses in a $[(\theta /- \theta / \theta_2)_2]_s$ laminate (*strain* =1%)

The University of Manchester

Fibre wavelength effect on fibre microbuckling triggering

Microbuckling amplitude:

$$\frac{\mathbf{V}}{\mathbf{V}_0} = \mathbf{f}(\mathbf{\sigma}_0)$$

Microbuckling amplitude V vs. stress on a 0° -ply σ_0 for $[(30/-30/0_2)_2]_s$

Off-axis ply orientation θ°	σ_0^* Fib $\lambda=10 \cdot d_{fibr}$	re half-waveleng $\lambda = 15 \cdot d_{\text{fibre}}$	gth $\lambda=20 \cdot d_{ ext{fibr}}$
0	968	743	657
30	961	737	637
45	961	723	635
60	975	745	673
75	977	751	680
90	979	753	683

for $[(\theta/-\theta/\theta_2)_2]_s \sigma_0^*$ depends mostly on:

G fibre wavelength matrix non-linearity less on interlaminar shear stresses but may not be the case under fatigue load

Compressive strength of a multidirectional laminate

Stiffness Ratio Method :
$$\sigma_{\text{lam}} = \frac{\sigma_0^*}{N E_{11}} \sum_{k=1}^{N} n^{(k)} \cdot E_{x0}^{(k)}$$

 σ_0^* critical stress for microbuckling initiation in the 0° ply

Theoretical predictions are conservative

Comparison of experimental and theoretical compressive strength for laminates $[(\theta/-\theta/0_2)_2]_s$

AEROSPACE RESEARCH INSTITUTE

Concluding remarks

The static compressive failure of UD and MD unnotched ^{Ce} T800/924C carbon-fibre– epoxy laminates is controlled by fibre microbuckling.

Microbuckling initiates by the elastic bending of the 0°fibres, loaded by resin material in shear.

Its initiation depends on material imperfections, such as resin rich regions, voids and fibre misalignment (waviness).

Model shows the interlaminar shear stress has a small influence on the 0° fibre microbuckling initiation, while the fibre wavelength and matrix non-linearity have a more significant effect.

Average measured failure strains ε_{fav} for each of the four angles θ (30°,45°,60°,75°) examined are scattered between -0.88 and -1%.

Specimens with ±45° surface plies appear to provide the most resistance to fibre microbuckling with $\varepsilon_{fav} = -0.95\%$.

The 0°-ply stress in a such laminate is ~1300 MPa compared to 1430 MPa measured for the 100% 0° laminate.

The 10% strength reduction could be due to edge effects and fabrication defects in the form of resin-rich regions and voids introduced at the interface of the axial and off-axis plies.